If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+52t+220=0
a = -16; b = 52; c = +220;
Δ = b2-4ac
Δ = 522-4·(-16)·220
Δ = 16784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16784}=\sqrt{16*1049}=\sqrt{16}*\sqrt{1049}=4\sqrt{1049}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(52)-4\sqrt{1049}}{2*-16}=\frac{-52-4\sqrt{1049}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(52)+4\sqrt{1049}}{2*-16}=\frac{-52+4\sqrt{1049}}{-32} $
| 1.6(v−5.5)−2=1.84 | | (-45+x)/7=48 | | C=0.1x^2-20x+1200 | | 0.4x−8.9=−0.4x+8.9 | | -8(h-96)=-8 | | -2(6+x)=3x+12 | | 5(t+3)=80 | | 18=9(h+77) | | 5t-(t-3)=15-2t | | 2x+22+9x-15+4x+11=45 | | 2x+22+9x-15+4x+11=60 | | x6−81x2=0 | | 2x+22+9x-15+4x+11=90 | | 5c+1=31 | | -5(5b+5)+8(3+2b)=b-1-8b | | 1/4x+9=2 | | 8.4=6(a2.4) | | 16-4x;=-4 | | 6x(3x+8)=-32 | | 10h–10=10–10h | | (X+40)=(6x) | | 1/5(3y-4)=4 | | 18x+63=15 | | 17y+12y-9y=360 | | -5(3-3w)=-105 | | 289=2x^2-14x+49 | | 40x=140 | | r+12=7 | | x2-10x+100=0 | | -27=(-2h-7)(-3) | | y2-10y+100=0 | | -3x^2-5=-32 |